


# Chapter 3 Programming the Robot

### Objectives

By the end of this lesson the learner should be able to:

- Identify and discuss the different motion control applications
- Explain various programming methods
- Discuss characteristics of the different types of programming
- Describe various peripheral applications, such as vision and voice recognition

### **Key Technical Terms**

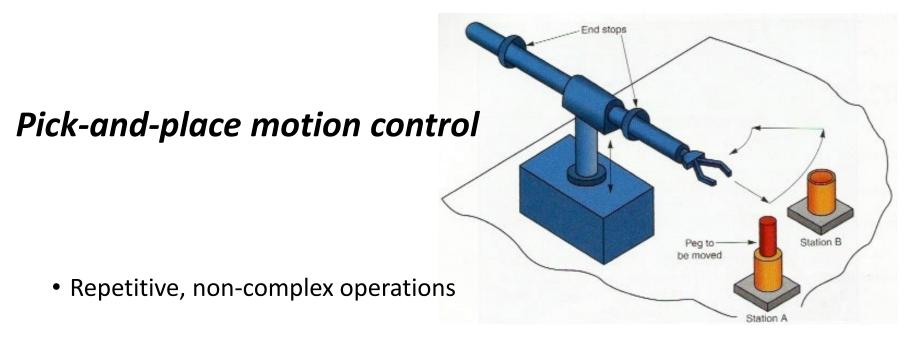
| Artificial Intelligence (AI) | Task-Level Programming           | Continuous Path Motion | Off-Line Programming  |
|------------------------------|----------------------------------|------------------------|-----------------------|
| On-Line Programming          | Teach Pendant Programming        | End Stop               | Pick-and-Place Motion |
| Voice Recognition            | Hierarchical Control Programming | Point-to-Point Motion  | High-Level Language   |
| Sensory Feedback             | Walk-Through Programming         | Manual Programming     | Sub Routine           |
| WAVE                         |                                  |                        |                       |
|                              |                                  |                        |                       |
|                              |                                  |                        |                       |
|                              |                                  |                        |                       |

By the end of this lesson the learner should be able to define and explain characteristics / actions related to these technical terms

## Evolution of Programming

#### Three Generations of Robotics

- First Generation 1950's to 1970's
- Second Generation 70's to mid 80's
- Third Generation mid 80's to Present
- Fourth (Future) Generation ????


#### Your Future

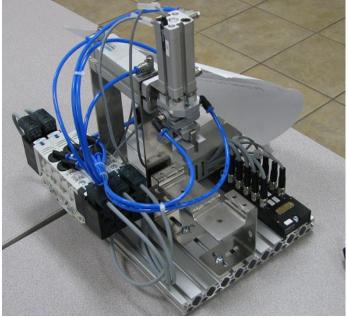
• Careers in Robotics: Software Engineer



### Three basic classifications of *motion control*

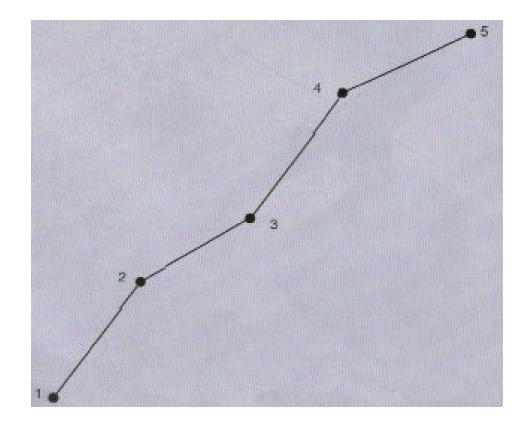
- Pick-and-place motion control
- Point-to-point motion control
- Continuous-path motion control




- Positioning to designated point set by:

   Mechanical stops (End Stops)
   Limit switches (Signals program to turn valve on/off)
- Difficult and tedious to make additions or adjustments
- Low number of points compared to other motion control

#### *Pick-and-place motion control* (continued)


- Is pick-and-place a form of open or closed-loop control and why?
   Open loop because there is no feedback used
- What is another name for this type of control system?
   Non-servo or Open-loop control system
- What does this type of motion control use to control the length of travel along each axis?

End stops and/or limit switches

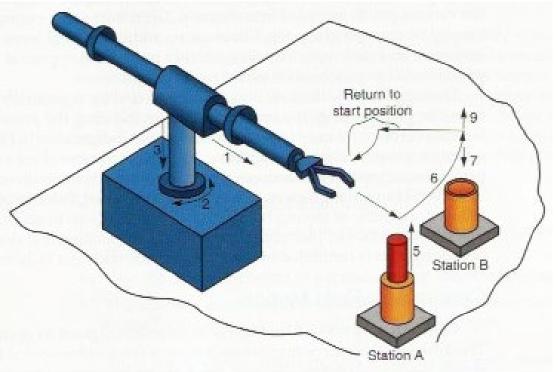


#### Point-to-point motion control

- Moves robot arm through a number of programmed points
- Each point position recorded and stored in memory
- Robot steps through the points as recorded
- The path is a series of straight lines connecting these points

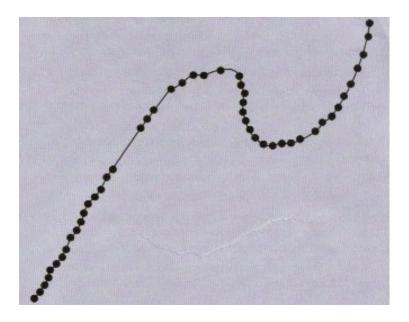


#### Point-to-point motion control (continued)


- End stops are used for redundant safety or crash limitation
- Capable of storing *hundreds of points*
- Acceleration, deceleration, and velocity (speed) separate control

Point-to-point motion control (continued)

- Is point-to-point motion control a form of open or closed-loop control? Why?
   Open loop because as with pick-and-place, there is no feedback used
- What device may be used to control velocity, acceleration, and deceleration?
   Tachometer


Home position is arm "back / returned" with the gripper "open":

- 1. Arm extend stop at pin 'A'
- 2. Gripper closed
- 3. Arm up
- 4. Arm left stop above 'B'
- 5. Arm down
- 6. Gripper open
- 7. Arm retract
- 8. Arm right "Home position"



#### Continuous-path motion control

- Similar to, but an extension of Point-to-point motion control
- Looking at the path diagram, how does this control differ?
  - Can include several thousand (not hundred) points
  - More points results in a more continuous and smooth motion
- Other differences
  - Robot typically moves "through" the various points
  - Points for each axis is recorded individually



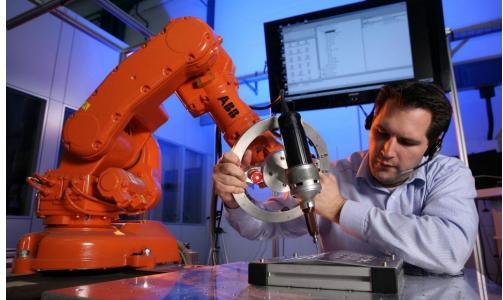
#### Manual programming

- Best suited for programming

   Pick-and-place
  - Point-to-point
  - $\circ \, \text{Open-loop controllers}$
- Suitable for:
  - Cost restrictive application
     Less complex application
- Flexibility is limited

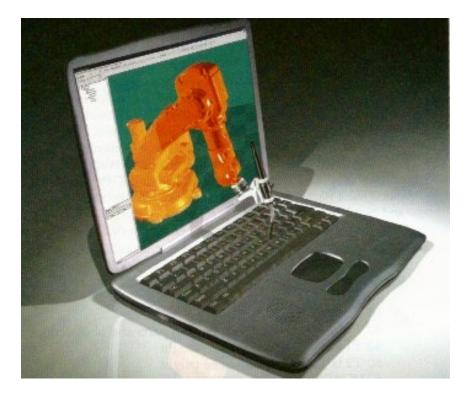
   Typically two or thee degrees of freedom
   Typically 10 to a few 100 program points




#### Teach pendant programming

- Operator virtually "leads" the robot through the various positions
- Points are recorded to create a point-to-point path
- Most popular and widely used programming method
  - Does not require a skilled computer programmer
  - Convenient
  - Simple to learn
  - Suitable for multiple industry tasks
- Must be "online" for this method




#### Walk-through programming

- An "experienced" operator "leads" robot through the various positions
- Points are recorded to create a point-to-point path
- More points more smooth and continuous motion
- Operator does not have to have computer experience
- Operator must be highly skilled in the precise motion of tasks being programmed
- Must be "online" for this method of programming

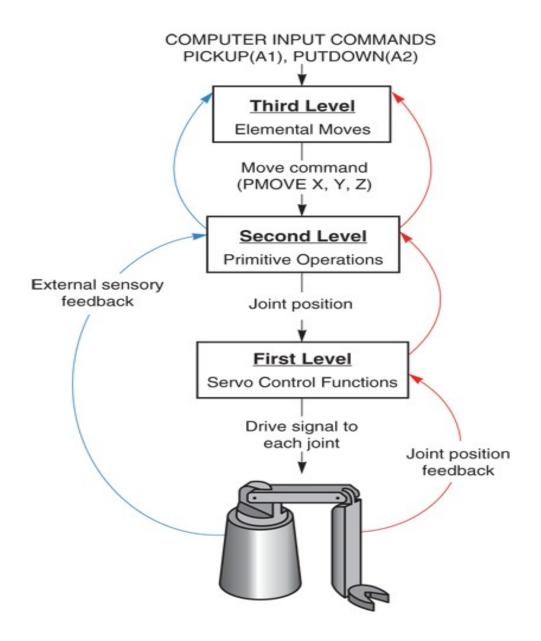


#### Programming using Computer

- Can be accomplished with the robot "online" or "offline"
- Provides more flexibility
  - New program can be written or modified while another is running production
- Computer language allows more complex operations
- Requires a highly experience programmer

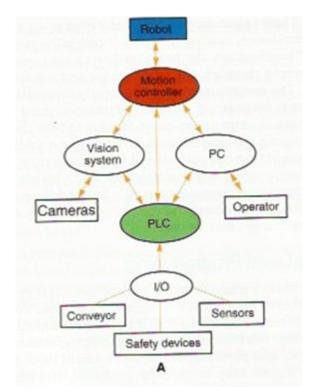


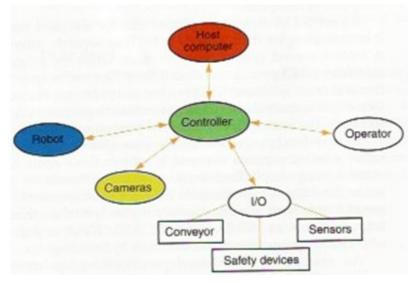
#### Programming using Computer (continued)


| Common Progra                                    |                        |                            |
|--------------------------------------------------|------------------------|----------------------------|
| Robotics Programming Language                    | Year of<br>Development | Originator                 |
| SAIL (Stanford Artificial Intelligence Language) | 1968                   | Stanford University        |
| AL (Assembly Language)                           | 1970s                  | Stanford University        |
| MCL (Manufacturing Control Language)             | 1980                   | McDonnell Douglas Corp.    |
| VAL (Variable Assembly Language)                 | 1980                   | Unimation Inc.             |
| Karel                                            | 1981                   | Fanuc Robotics America Inc |
| AML (A Manufacturing Language)                   | 1982                   | IBM                        |
| RAIL                                             | 1982                   | Automatrix                 |
| RPL                                              | 1984                   | Hewlett Packard            |
| RobotBASIC                                       | 1984                   | Intelledex Inc.            |
| Magik                                            | 1999                   | GE Energy                  |



Two primary types of programming


- Hierarchical control programming
- Task-Level programming


### Hierarchical Control Programming



#### Task-Level control programming

- User specified task goals rather than programming motion
- Many activities can be programmed by computer
  - Responding to sensors and other inputs
- "User-friendly" programming



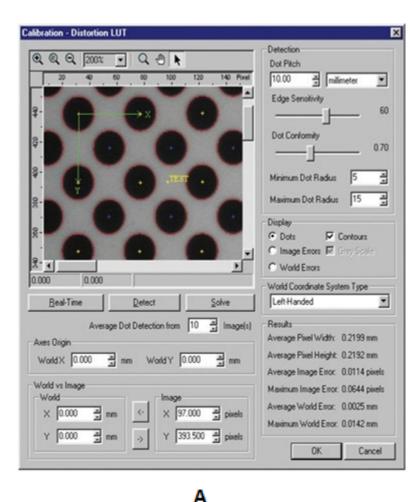


#### Task-Level control programming (continued)

| Common Task-level Programming Functions |                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Function                                | Programming                                                                                                                                                                                                                                                                                                |  |
| Robot Movements                         | The first step in creating the robot program is to select the sequence of movements from a menu. For example, the MOVE statement tells the robot to pick up parts from one location and place them in another location. This type of sequence may be used to move a part from a conveyor belt to a pallet. |  |
| Location Information                    | A location database stores work cell locations. The height of each location, approach, and departure are taught or modified by making the appropriate selections and entries. The robot's speed, type of motion, and other details are also selected and stored.                                           |  |
| Palletizing                             | The PALLET statement is commonly used in automatic palletizing functions.<br>The operator can define spacing and the number of pallet locations.                                                                                                                                                           |  |
| Visual Sensors                          | The type of visual sensors needed can be specified by making the<br>appropriate selections and entries on the program interface. For<br>example, a visual inspection sensor can locate and evaluate parts, while<br>a visual guidance sensor may track and orient the parts along a<br>conveyor belt.      |  |
| General Control Functions               | From the control panel screen, the operator can start the operation,<br>slow the speed of the robot, and step the robot through its motions to be<br>sure the program is performing as intended. The control panel screen<br>may also be used for debugging and cell control.                              |  |

What are the three levels of hierarchical control?

- Main control
- Path control
- Actuator control


What type of control system using sensory feedback control?


Closed-loop or servo

What type of programming is considered more "user friendly" and simplifies a complex set of instructions for a typical work cell?

• Task-Level Control Programming

## Voice and Vision Recognition





#### в

Vision system calibrating for part recognition and locating

Vision system performing an inspection on a Integrated Circuit (IC) footprint